Manasa et al. Discover Plants

(2025) 2:300

Discover Plants

https://doi.org/10.1007/s44372-025-00382-2

RESEARCH Open Access

Unveiling submergence tolerance in improved

®

Check for
updates

restorer lines of rice (Oryza sativa L.) seedlings
at varied durations: evaluation through
chlorophyll fluorescence and morphological

responses

Y. Manasa', P. Beulah', G. Karthika', V. Jaldhani', V. G. N. Tripura Venkata', K. K. Raghuraman', M. Arivin',
D. Sanjeeva Rao', S. K. Mangrauthia', A. S. HariPrasad', R. M. Sundaram’, A. Krishna Satya?, P. Sudhakar?,
P. Raghuveer Rao' and P. Senguttuvel”

*Correspondence:

P Senguttuvel
senguttuvel@gmail.com

'Crop Improvement Section, Indian
Council of Agricultural Research
(ICAR) - Indian Institute of Rice
Research (IIRR), Hyderabad
500030, India

“Department of Biotechnology,
Acharya Nagarjuna University,
Guntur, Andhra Pradesh
522510, India

@ Discover

Abstract

Submergence stress caused by flash floods is a major abiotic challenge that hampers
plant growth and threatens sustainable crop production in the era of climate
change. The rice restorer 'KMR-3R’ plays a crucial role in hybrid rice breeding, but

its susceptibility to submergence stress poses a significant limitation. To enhance

its submergence tolerance, we employed marker-assisted backcross breeding to
introgress the Sub! gene from Swarna-Sub1 into KMR-3R. This study assessed the
morpho-physiological responses of 13 backcross inbred lines (BILs) of KMR-3R (BC,Fy)
at the 14-days-old seedling stage under two submergence durations (7- and 14-
days). Prolonged submergence significantly impacted survival rates, chlorophyll
fluorescence parameters (F,/F, Y(Il), ETR, gN, gP) and total chlorophyll content

in both BILs and parental lines compared to the control. Shoot elongation was
restricted at 14-days after submergence (DAS). Notably, seven BILs (TCP18, TCP28,
MB44, TCP25, TCP15, TCPO2 and TCP10) exhibited limited shoot elongation, stable PS
Il activity, while TCP18 and TCP15 showed highest survival percentage exceeding that
of Swarna-Sub1 at 14-DAS highlighting their enhanced tolerance. These promising
BILs have the potential to serve as improved restorer lines for the developing
submergence-tolerant rice hybrids in flash floods prone ecosystem.
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1 Introduction

Rice (Oryza sativa L.) is a globally significant staple food crop, playing a crucial role in
food security and livelihoods of growing population. Global rice production stands at
527.61 million metric tons (MMT) across 167.55 million hectares, while India contrib-
uting 138 MMT from 48.50 million hectares [1]. However, recurrent flooding poses a
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major challenge to rice cultivation, adversely affecting production and productivity.
The flooding stress is classified as either submergence or water logging stress, depend-
ing on the depth of the water table [2]. Among the various abiotic stresses impacting
rice production, submergence stress is particularly detrimental [3]. It occurs when the
rice plants are completely submerged due to flash floods, especially during the vegeta-
tive or seedling stages and can last up to two weeks. The frequent occurrence of flood-
ing discourages the adoption of high-yielding varieties that lack submergence tolerance,
leading to reduced farm income (with annual losses estimated at Rs. 432 crores) and
jeopardizing food security and livelihoods [4].

While submergence stress known to cause substantial yield losses in inbred rice variet-
ies, its impact on hybrid rice remains less explored. Although India has developed and
released 152 rice hybrids covering 3.5 million hectares (http://aicrip-intranet.in/), none
exhibit significant submergence tolerance. The rice hybrids cultivars such as ‘Zheou-18’
and ‘Yliangyou-689" have shown significant yield reductions under submergence con-
ditions [3]. Given the rising global demand for rice, breeding programs must prioritize
the development of high yielding, submergence tolerant hybrids, particularly for flood-
prone regions.

As a semi-aquatic species, rice can withstand short-term flooding for up to one week
[5, 6]. However, only genotypes with specific tolerance mechanisms can survive pro-
longed submergence [6]. Developing such cultivars requires a deep understanding of the
physiological and metabolic responses of rice to flooding. Under submergence, plants
undergo complex physiological changes, including reduced growth rates [7]. Prolonged
submergence negatively affects key physiological processes such as chlorophyll degra-
dation, gas exchange, stomatal conductance, and photosynthetic efficiency, often before
visible symptoms of plant stress appear [8] [9].

Screening 14-days old seedling has been effective in identifying genotypes with
improved survival rate under submergence stress [10]. The duration of submergence also
influences the expression of Subl, a gene linked to submergence tolerance, enabling rice
plants to survive complete submergence for up to 14-days [11]. Key indicators of sub-
mergence tolerance at 14-days after submergence (DAS) stress include shoot elongation
percentage and seedling survival rate, which reflect a plant’s ability to withstand flooding
conditions [9, 12]. Controlled environment screening, such as artificial tanks with stable
water levels (55 cm), allows precise evaluation of plant responses to submergence while
minimizing environmental variability [13]. Significant progress has been made in intro-
gressing the SublA gene into major rice varieties, enhancing their tolerance to submer-
gence and flash floods for up to two weeks [14, 15].

To address these challenges, a marker-assisted backcross breeding (MABB) strategy
was employed to improve the submergence tolerance of the widely used restorer line
‘KMR-3R’ by introgressing the Subl gene derived from Swarna-Subl, the Subl plays a
critical role in regulating ethylene signalling and plant growth under low-oxygen condi-
tions [11], thereby enhancing submergence tolerance. This study hypothesizes that rice
plants possessing the Subl gene will exhibit increased photosynthetic activity, greater
physiological resilience, restricted shoot elongation, and improved post-stress recovery
compared to non-Subl plants under submergence durations of 7- and 14-days at the
14-day-old seedling stage [16]. The study focuses on evaluating the morpho-physiolog-
ical responses of backcross inbred lines (BILs) carrying the Subl gene under varying
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submergence stress durations. The findings provide valuable insights into photosyn-
thetic changes during submergence and contribute to a deeper understanding of plant
adaptation to prolonged submergence.

2 Materials and methods

The plant material used in this study comprised 13 advanced backcross Subl intro-
gressed lines (BILs) at the BC,F, generation, developed from the KMR-3R x Swarna-
Subl, along with the parental lines. The BILs included are RP-6342-VTCP02 (TCP02),
RP-6342-VTCP10 (TCP10), RP-6342-VTCP11 (TCP11), RP-6342-VTCP12 (TCP12),
RP-6342-VTCP14 (TCP14), RP-6342-VTCP15 (TCP15), RP-6342-VTCP18 (TCP18),
RP-6342-VTCP23 (TCP23), RP-6342-VTCP25 (TCP25), RP-6342-VTCP26 (TCP26),
RP-6342-VTCP28 (TCP28), RP-6342-VTCP32 (TCP32), and RP-6342-MB44 (MB44).

2.1 Screening of BILs using fertility restoration markers
The submergence tolerant conferring QTL- Subl from Swarna-subl were introgressed
into KMR-3R using MABB method. Two successive backcrosses and pedigree selec-
tion was followed for further advancement of generations up to BC,F,. KMR-3R being a
restorer, the derived BILs were also screened for fertility restoration using gene specific
markers RMS-PPR9-1, DRCG-RF4-14 for Rf4 and RMS-SF-21-5 for Rf3 genes.
Screening of BILs for fertility restoration using molecular markers was performed fol-
lowing the protocol reported in our earlier study [17]

2.2 Screening for submergence tolerance

The experiment was conducted during Kharif 2021 in the artificial screening facil-
ity under standard environmental conditions at the Department of Hybrid Rice, Crop
Improvement Section, Indian Council of Agricultural Research (ICAR)—Indian Insti-
tute of Rice Research (IIRR), Hyderabad, India (17.53°N and 78.27°E). Seedlings of
all the BILs along with their parents were grown in rows within four plastic trays
(56 cm x 36 cm x 11.5 cm) filled with fertilized soil. Each tray was systematically divided
into two halves to facilitate replication following a completely randomized design
(CRD). Each row represented a distinct genotype, with one half designated as replica-
tion 1 and the other as replication 2. Three plants per genotype were randomly selected
as biological replicates within each replication. Among the four trays, two trays were
subjected to submergence stress for 7- and 14-days individually, while the other two
trays were maintained as control under normal conditions. Submergence stress was
induced by immersing the trays with 14-days-old seedlings into individual cement tanks
(84.5 cm x 54.5 cm x 55 c¢m), ensuring a water level of 55 cm from the base of the trays
for the specified durations (7- and 14-days). After each stress duration, the trays were
removed from the tanks and kept in dark conditions for one hour to facilitate physiologi-
cal analysis. Following the stress treatment and sample collection seedlings were allowed
a recovery period of two weeks (14-days) under normal environmental conditions to
examine their survival and recovery. The revival ability of the seedlings was evaluated
visually using the SES scale (1, 3, 5, 7, and 9), whereas the scores 1 and 9 indicates 100
(%) and 0-49 (%) survival of plants as described by [18]. Morphological and physiologi-
cal parameters were recorded to assess submergence tolerance.
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2.3 Seedling survival (%)
Seedling survival under submergence stress was calculated using the following formula
given by [19]

Seedling survival (% )=

Number of plants reemerged after the recovery period of stress 100
Total number of plants before stress

2.4 Plant height and shoot elongation percent

Plant height and shoot elongation were assessed in three randomly selected plants from
each replicate under both control and stress conditions across submergence durations.
The height was measured from the ground level to the tip of the top leaf using a ruler.
The shoot elongation percent was calculated by subtracting the height of the control
seedlings from the height of the seedlings subjected to submergence stress. The result
was then expressed as a percentage of the plant height under control conditions using
the formula given by [19]

Shoot Elongation (% )
- (Plant height after submergence stress - Plant height under control conditions) 100

Plant height under control conditions

2.5 Chlorophyll fluorescence and total chlorophyll content

Chlorophyll fluorescence was measured at the seedling stage using a portable fluorom-
eter (PAM-210, Effeltrich, Germany). The fluorescence parameters comprise of actual
photosynthetic efficiency [Y(II)], electron transport rate (ETR), coefficient of photo-
chemical quenching (qP), coefficient of non-photochemical quenching (qN), and maxi-
mal quantum yield of PSII (F,/F ). Measurements were taken on the leaves of three to
four seedlings from each genotype, in two replicates, under dark-adapted conditions
(two hours) for specified submergence durations (7- and 14-days) as well as under con-
trol conditions. After recording chlorophyll fluorescence parameters, the same leaves
were used to estimate the total chlorophyll content under stress and control conditions
at 14-days (Total chlorophyll content at 7-days stress could not be analysed due to tech-
nical constraints).

For total chlorophyll content estimation, 100 mg of fresh leaves from each genotype
were individually weighed and incubated in screw-cap tubes containing 25 ml of 80 (%)
acetone (v/v) for 48 h in the dark. Absorbance was measured at 645 nm and 663 nm
using a spectrophotometer (GE Ultrospec) as per the method described by [20]. The
total chlorophyll content (mg g™ FW) was calculated using the formula:

Total chlorophyll content (ug/mL) = 20.2A645 + 8.02A663

where Ag,;—Absorbance at 645 nm; Ag,;—Absorbance at 663 nm.

2.6 Statistical analysis

The data were analysed using two-way ANOVA to evaluate the effects of genotype and
treatment (control and stress conditions) and their interactions. Tukey’s post-hoc test
was performed to compare means and identify significant differences between treat-
ments and genotypes. All statistical analyses were conducted using GenStat version 15



Manasa et al. Discover Plants (2025) 2:300 Page 5 of 15

(VSN International Pvt. Ltd). ANOVA of Seedling survival (%) was done in the BILs
excluding KMR-3R and TCP32 to maintain the uniformity of the data, since KMR-3R
died due to the induced submergence stress and also devoid of Sub1 gene.

3 Results

3.1 Phenotypic screening of BlLs for submergence tolerance under 7- and 14-durations
The current study revealed the submergence tolerance of BILs over varying durations (7-
and 14-days). The scoring of BILs screened at 7- and 14-days stress was presented in the
Supplementary Table 1. Among the studied thirteen BILs, seven BILs at 7-DAS and six
BILs at 14-DAS showed varying levels of tolerance respectively (Fig. 1). Notably, Swarna-
Sub1 exhibited tolerance mechanisms, whereas KMR-3R was highly sensitive.

3.2 ANOVA results

The ANOVA results revealed significant effects of duration (D), treatment (T), and their
interaction (DxT) on seedling survival percentage, Actual photosynthetic efficiency
[Y(IT)] and electron transport rate (ETR). The coefficient of photochemical quench-
ing (qP) was significantly affected by duration (D), and its interaction with treatment
(D xT). Total chlorophyll content (TC) was significantly affected by treatment while the
plant height (PH) and maximum quantum yield of photosystem II (F /F, ) were signifi-
cantly influenced by duration (D) and treatment (T) (Table 1).

3.3 Morphological parameters

The BILs recovered after 7- and 14-days of submergence were evaluated for their visual
performance using the Standard Evaluation System (SES) scale [18]. Their scores were
compared against the donor parent, Swarna-Sub1 (Supplementary Table 1).

a. CONTROL

l

-

b. SUBMERGENCE STRESS (DAY-1) d. RECOVERY (14-DAYS STRESS)

Fig. 1 Showing BILs, parents in control, stress and recovery for tolerance to submergence stress at varied time
durations
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Table 1 Analysis of variance (ANOVA) of BlLs, submergence durations and their interactions for
morpho-physiological parameters in rice

Source of df Seedling Plant Y(I) ETR qP qN F./Fr
variation survival  height

(%) (cm)
Duration (D) 1 81274™ 99.736™ 0043701 204624 0072104 0.000411" 0.013409"
Treatment (T) 1 12267277 39434 0013125" 51352 0.002054™ 0.000161" 0.068235
Duration x Treat- 1 81274 5461™ 00517097 2709017 0.103283"" 0.036505  0.000768"
ment (DXT)
Residual 116 2621 2082 0001727 8775 0003029 0001926  0.001989
CV (%) 1822 9.0 19.0 195 17.2 255 58

Y(ll)-Actual photosynthetic efficiency; ETR-Electron transport rate; qP-Coefficient of Photochemical quenching; gN-
Coefficient of non- photochemical quenching; F/F.,.-Maximum efficiency of PSIl photochemistry
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Fig. 2 Seedling survival (%) of BILs after 14-days of recovery of de-submerged plants subjected to stress for 7- and
14- days

3.4 Seedling survival (%)

The mean seedling survival (%) of the genotypes decreased as the duration of submer-
gence increased from 7 to 14-days. Following recovery after 14-days of stress, the mean
survival rates were recorded at 95.5 (%) (7-DAS) and 67.7 (%) (14-DAS) (Supplementary
Table 2). At 7-DAS, seven BILs exhibited higher survival rates than the parental lines,
with TCP15 and TCP25 achieving 100 (%) survival. At 14-DAS, TCP18, TCP28, and
TCP15 demonstrated superior survival rates, while TCP25 performed comparably to
Swarna-Subl. In contrast, KMR-3R experienced complete mortality at 14-DAS (Fig. 2).
Tukey’s test revealed significant reduction of mean at 14-days stress compared to 7-days
stress. No significant differences were found among the genotypes at both stress dura-
tions. (Note: Standard error was not shown because of the identical replicate values,
since the error is zero).
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3.5 Plant height

The mean plant height of BILs exhibited an increasing trend with prolonged submer-
gence stress. The BILs after desubmergence were significantly shorter than KMR-3R at
both 7- and 14-DAS, while TCP18 maintained a consistently lower plant height com-
pared to Swarna-Subl across all stress durations. Significant genotypic variations in
plant height were observed at 7- and 14-D under both control and stress conditions
(Supplementary Table 3). TCP15, TCP18, TCP25, fand TCP32 showed significantly
lesser plant height than KMR-3R.

3.6 Shoot elongation percentage (%)

Shoot elongation percentage (%) increased with the duration of submergence, reaching
23.98 (%) at 7-DAS and 27.18 (%) at 14-DAS (Supplementary Table 4). All BILs exhibited
lower shoot elongation than KMR-3R, whereas TCP26 and TCP23 displayed the highest
elongation among the BILs and Swarna-Subl at both time points. At 14-DAS, TCP11,
TCP15, TCP18, TCP25, TCP26, TCP28, TCP32, and MB44 exhibited significantly lower
shoot elongation than Swarna-Subl. Notably, TCP18 consistently recorded the lowest
shoot elongation percentage across submergence durations (Fig. 3). No significant differ-

ences were observed among the genotypes.

3.7 Effect of submergence stress on total chlorophyll content and fluorescence parameters
Submergence stress led to a reduction in total chlorophyll content and chlorophyll
fluorescence parameters, including actual photosynthetic efficiency [Y(II)], electron
transport rate (ETR), coefficient of photochemical quenching (qP), coefficient of non-
photochemical quenching (qN), and maximal quantum yield of PSII (F /F,) over 7- and
14-DAS across the studied genotypes (Table 2). However, certain BILs exhibited higher
values for these parameters at specific time points.
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Fig. 3 Shoot elongation (%) of BlLs at 7- and 14- days of stress (after de-submergence)
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Total chlorophyll content was highest in TCP26, TCP32, TCP02, TCP10, MB44 and
TCP28 at 14-DAS, while TCP26 and MB44 maintained higher chlorophyll content post-
submergence (Fig. 4). At 7-DAS, TCP10 demonstrated higher Y(II), while TCP26 exhib-
ited the highest Y(II) at 14-DAS (Table 2). A significant reduction of mean Y(II) was
observed under 14-DAS. TCP10 at 7-DAS and TCP26 at 14-DAS recorded a higher ETR
than the parental lines. Significant reduction of mean at 14-DAS was observed for ETR
and no variation among the genotypes was observed. For qP, TCP10 and TCPO02 exhib-
ited superior values at 7-DAS, whereas TCP02 and TCP26 outperformed the parental
lines at 14-DAS. Significant reduction in mean qP was observed at 14-DAS. No geno-
typic differences were found among the genotypes.

The mean N remained stable at 0.17 across both time periods; however, TCP25,
TCP23, and TCP18 recorded the highest qN values compared to the parental lines at
7- and 14-days of stress durations, respectively. The mean F /F  ratio showed a slight
decline from 0.78 at 7-DAS to 0.76 at 14-DAS. Nevertheless, BILs such as TCP02 and
TCP23 consistently exhibited higher F /F, values than the parental lines at both time
points, along with TCP10 (Fig. 5). No significant differences among the genotypes
were observed for qN and F /F, under 7- and 14-DAS. Reduction in mean values were
observed for total chlorophyll content, Y(II), ETR, qP, and F /F ratio after 14-DAS
(Table 2).

4 Discussion

4.1 Screening of BlLs for fertility restoration using markers

The BILs used in the present study were identified as promising restorers possessing fer-
tility restoration genes along with Sub1 [17]. Based on the presence of SubI gene and fer-
tility restoration genes, 13 BILs along with their parents were evaluated for physiological
and morphological parameters for assessing their tolerance under varied submergence
stress. These changes were discussed as follows:

4.2 Impact of submergence stress on rice survival and tolerance mechanisms
Submergence stress limits oxygen and light availability, thereby disrupting key physi-
ological and metabolic processes [21]. Most rice cultivars experience severe damage or
mortality after a week or prolonged submergence [11, 22]. The extent of submergence-
induced damage and subsequent recovery depends on the duration of stress, with
prolonged submergence often resulting in irreversible injury or plant death [6]. Submer-
gence tolerance is a complex trait regulated by genetic, physiological, and biochemical
mechanisms that enable plants to withstand and recover from flooding stress [23]. How-
ever, the degree of submergence impact varies due to multiple factors, including seed-
ling age, submergence duration, water turbidity, depth, temperature, light intensity, and
carbohydrate availability [13, 24]. Screening BILs across different submergence dura-
tions facilitates the identification of tolerant genotypes. This study demonstrated that
prolonged submergence significantly reduced the survival ability of all genotypes. The
variation in survival rates among genotypes was primarily attributed to the presence or
absence of Sub1A, a major gene conferring submergence tolerance in rice [25].
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Fig.5 F /F, ratio of BlLs at 7- and14-days of submergence stress

4.3 Responses of BILs to submergence stress

Rice cultivars generally tolerate up to a week of flooding, but prolonged submergence
beyond this threshold significantly reduces survival, with only tolerant genotypes capa-
ble of recovery [6]. To withstand hypoxia/anoxia, tolerant rice genotypes undergo a
series of adaptive modifications that mitigate damage and enhance survival [26, 27]. The
SublA gene plays a critical role in regulating physiological and molecular responses dur-
ing submergence and de-submergence, conferring enhanced tolerance [28].
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Following stress removal, genotypes were allowed a two-week recovery period [29].
TCP15 and TCP25 exhibited 100 (%) survival under 7-DAS, assessed 14-days after
recovery (DAR). Similarly, TCP18, TCP15, TCP25, and TCP28 demonstrated the high-
est survival among the BILs and parental lines under 14-DAS, consistent with earlier
reports [28-30]. While SublA introgression generally enhances submergence toler-
ance, extended submergence (e.g., 20-days) can still cause severe damage, as reported by
Sarkar and Bhattacharjee [19].

4.4 Morphological adaptations and shoot elongation response

All BILs exhibited shorter plant heights than KMR-3R at 7- and 14-DAS, with TCP18
consistently shorter than Swarna-Subl across all stress durations. Tolerant cultivars gen-
erally maintain reduced elongation to conserve energy for post-submergence recovery,
as observed in previous studies [31]. The shoot elongation percentage (SE (%) in all BILs
remained lower than KMR-3R at both 7- and 14-DAS. Furthermore, TCP11, TCP15,
TCP18, TCP25, TCP26, TCP28, TCP32, and MB44 exhibited lower SE (%) than Swarna-
Subl at 14-DAS, indicating a quiescence response that minimizes carbohydrate deple-
tion during submergence [32, 33]. In contrast, KMR-3R and TCP23 exhibited greater
plant height and SE (%), suggesting an elongation-driven escape strategy. While this
mechanism allows access to oxygen and light, it also increases lodging risk and acceler-
ates carbohydrate depletion, ultimately leading to mortality [22, 34]. The failure of recov-
ery in TCP32, despite the presence of Subl gene, may be due to several factors, including
variations in SubIA and SublC gene expression and genetic background interactions
of recurrent parent and duration [35], carbohydrate exhaustion [36], and ROS accu-
mulation [37]. These factors highlight that while Subl confers submergence tolerance,
its effectiveness depends on genetic regulation, physiological energy reserves, oxida-
tive defense mechanisms, and environmental suitability. Reported studies have demon-
strated that submergence tolerance in rice is influenced by haplotypic variation at the
SublA locus (SublA-1 vs. SublA-2), differential gene expression under stress conditions,
and genetic interactions with other loci that collectively contribute to the modulation of
submergence tolerance in rice [11, 28, 38]. Although the improved submergence toler-
ance observed in the BILs correlates with the introgression of SublA, only the SublA-
1 allele with a serine at position 186 confers strong induction and tolerance, whereas
the SublA-2 allele (bearing proline at this site) is poorly induced and typically ineffec-
tive [39]. Additionally, submergence resistance can also arise from SublA-independent
physiological mechanisms, such as slowed starch hydrolysis, enhanced carbohydrate
conservation, and quiescent under water [40, 41].

4.5 Chlorophyll content, chlorophyll fluorescence and PSlI stability

Chlorophyll degradation was more pronounced in sensitive cultivars, consistent with
previous findings [29, 42—44]. Except for TCP26, TCP32, TCP02, TCP10, MB44 and
TCP28, the remaining BILs exhibited elevated chlorophyll degradation after 14-days of
stress.

The increase in Y(II) in TCP10 at 7-DAS and TCP26 at 14-DAS suggests superior pho-
tochemical efficiency in PSII [26], aligning with earlier reports [26, 45]. Similarly, TCP10
and TCP26 exhibited higher ETR than the parental lines at both 7- and 14-DAS, with
TCP15 surpassing Swarna-Subl at 14-DAS. These results confirm that submergence
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stress inhibits PSII activity and reduces photosynthetic efficiency in sensitive genotypes
[45, 46].

The qP values progressively declined with increasing submergence duration, from 0.34
at 7-DAS to 0.30 at 14-DAS, indicating increased PSII damage over time [45]. Nota-
bly, TCP10, TCP02, and TCP26 maintained higher qP values than the parents at 7- and
14-DAS, suggesting superior photoprotective mechanisms.

Meanwhile, qN, an indicator of non-photochemical quenching, was significantly
higher in TCP25 at 7-DAS and in TCP23, TCP11, TCP25, and MB44 at 14-DAS, high-
lighting their enhanced photoprotection and reduced energy conversion under stress
[26]. These findings align with previous reports [45, 47]

4.6 Submergence tolerance and genetic implications

Several BILs, including TCP02, TCP10, TCP12, TCP14, TCP23, and TCP18, exhibited
superior F/F, values compared to the parental lines, indicating greater PSII stabil-
ity under prolonged submergence. These findings agree with prior studies [26, 29, 42,
45, 47-49]. The increased tolerance of these BILs to 14-days of submergence may be
attributed to their enhanced photosynthetic efficiency and photoprotective mechanisms.
The observed variations in physiological responses among the genotypes highlight
the genetic diversity influencing submergence tolerance. Significant differences were
observed in total chlorophyll content, ETR, and F /F,, ratio at 14-DAS, reinforcing the
impact of prolonged submergence on these physiological traits. Prior studies have also
demonstrated that submergence depth and duration critically influence seedling survival
[50]. Our findings suggest that the selected BILs hold promise as improved restorer lines

and genetic resources for submergence tolerance up to 14-days of flooding.

5 Conclusion

This study is the first to report the enhancement of restorer lines for submergence tol-
erance in rice in India. The findings revealed significant genotype-specific variations in
response to different durations of submergence stress. All genotypes exhibited stabil-
ity up to 7-DAS. Notably, the BILs- TCP15, TCP18, TCP25, and TCP28 demonstrated
superior regeneration ability compared to Swarna-Subl, highlighting their stable photo-
system II (PS-II) activity at 14-DAS. Based on assessments of chlorophyll fluorescence
parameters and regeneration potential, the BILs TCP15, TCP18, TCP25, TCP28, MB44,
and TCPO02 emerged as promising restorer lines for submergence tolerance at 14-DAS.
These lines hold significant potential for developing submergence-tolerant rice hybrids,

particularly suitable for flood-prone regions.
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